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We study the interface between liquid and vapor in the context of the van der
Waals theory, considering the non-local free energy functional recently derived
by Lebowitz, Mazel, and Presutti from a system of particles in the continuum
with Kac potentials. We prove that the density profile between vapor and liquid
is monotone when the inverse temperature is between the critical value bc and a
second critical value bg > bc, becoming oscillatory after bg and overshooting the
equilibrium density of the liquid phase infinitely often.
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1. INTRODUCTION

In a recent paper, (1) Lebowitz, Mazel, and Presutti, LMP, have proved that
systems of identical point particles in the continuum have liquid-vapor
phase transitions. The interaction among particles is given by a very speci-
fic class of two-body attractive plus four-body repulsive Kac potentials. By
taking full advantage of the choice, LMP have proved that, after coarse
graining, the effective temperature of the system becomes lower and the
Pirogov–Sinai method applies.
The robustness of the analysis makes it conceivable that phase coexis-

tence, surface tension and Wulff shape might be approached as well.
Indeed such a program has been successfully carried through for Ising



models with Kac potentials. Phase transitions are proved in refs. 2, 3, and 4,
validity of Wulff construction is more recent, (5) while older results, (6–8)

show that the surface tension converges to the v.d.W. [van der Waals]
surface tension as c (the inverse range of the Kac potential) goes to 0. The
main obstacle in extending the results from Ising to LMP is the extensive
use in the former of ferromagnetic inequalities which are missing in the
latter due to the four-body repulsive interaction (whose presence is, on
the other hand, essential to ensure stability of matter). Also at the level of
the v.d.W. theory, ferromagnetic inequalities are important. The results
about interface profiles (instantons) and their free energy (surface tension)
for the non-local free energy functionals derived from the Ising system with
Kac potentials extensively use comparison inequalities inherited from the
underlying ferromagnetic spin system. Again, in the non-local functional
derived from LMP comparison inequalities are not valid and our purpose
here is to start an investigation of the issue at the level of the v.d.W.
theory.
Our results show the appearance of very interesting physical structures

which, even though derived from a particular model, may hopefully have
more general nature. We have found that there exist two temperature
regimes (below the critical temperature). In the first one, despite the
absence of ferromagnetic inequalities, the interface behaves just as in
the ferromagnetic Ising case. In fact the density profile which connects the
vapor and the liquid phases is monotononically increasing and the conver-
gence to the asymptotic values exponentially fast.
As the temperature decreases past a ‘‘second critical value,’’ the

picture changes abruptly and the instanton profile presents oscillations
when approaching (still in an exponential fashion) the liquid phase, with
infinitely many oscillations above and below the limit value (overshooting
effects). The appearence of oscillatory patterns of the density-density cor-
relations in a liquid are known, both experimentally and theoretically, see
ref. 9 and references therein. There are indications of their occurrence also
at the vapor-liquid interface, but the issue is more controversial and we
address the reader to the survey by Croxton. (10)

2. THE LMP NON-LOCAL, FREE ENERGY FUNCTIONALS

The scaling limit of the LMP particle model, see ref. 1, is described by
the non-local, free energy functionals

Fb, l; L(r)=F
L

dr 1El(J f r)−
S(r)
b
2 (2.1)
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where L is a d-dimensional torus, b the inverse temperature, l the chemical
potential, r ¥ L1(L, R+) a density profile,

El(s)=−ls−
s2

2
+
s4

4!
(2.2)

the mean field energy density; J=J(r, rŒ)=1|r−rŒ| [ Rd is a probability
kernel, J f r being the convolution in the torus L. Finally S(r)=
−r(log r−1) is the entropy density.
The terms s2 and s4 are reminiscent of the two and four-body interac-

tions in the particle model, their different signs in (2.2) being related to the
attractive and repulsive nature of the 2 and 4 body interactions. The par-
ticular combination of the convolution terms in (2.1) is very specific and
characteristic of the LMP model, it reflects its atypical feature (for systems
with repulsive interactions) that the minimizers of the free energy are spa-
tially homogeneous, i.e., constant functions, for any value of temperature
and chemical potential. This is readily seen by rewritingFb, l; L as

Fb, l; L(r)=F
L

dr 1Fb, l(J f r)+
1
b
{S(J f r)−J f S(r)}2 (2.3)

Fb, l(s)=El(s)+
s
b
(log s−1) (2.4)

By concavity the integral of the curly bracket is minimized by taking r(r)
equal to a constant independent of r; by choosing the constant equal to a
minimizer of (2.4) we then get a minimizer for the full functionalFb, l; L.
Thus the minimization of Fb, l; L reduces to that of Fb, l(s) which is

elementary. For b [ bc=(3/2)3/2, Fb, l has for any l a unique minimizer.
For b > bc, there is a unique value of l, l=lb, where Fb, l has two distinct
minimizers, 0 < rb, − < rb,+ ( for l ] lb the minimizer is unique). Denoting,
by an abuse of notation, Eb — Elb and writing E

−

b(s) for the derivative of
Eb(s) w.r.t. s, the equilibrium densities satisfy the mean field equation
m.f.e.

s=exp{−bE −b(s)}=: jb(s) (2.5)

Such equation has three roots, rb, − < rb, 0 < rb,+; the two extremal are
stable the central one unstable. As a consequence j −b(rb,+) < 1. We then
define bg > bc and b0 > bg so that

1 > j −b(rb,+) > 0, for bc < b < bg (2.6)
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At bg the derivative becomes 0, j −bg(rbg,+)=0, and

0 > j −b(rb,+) > −1, for bg < b < b0 (2.7)

Since for any b, s=`2 is the only root of j −b(s)=0, rbg,+=`2. The
interval (bc, b0) is the one considered in LMP and we will also restrict our
analysis to b in (bc, b0).

3. VAN DER WAALS SURFACE TENSION

Coexistence of phases is studied by imposing conditions which favor
different phases in different parts of the domain. By assuming planar
symmetry and denoting by x the coordinate along the normal to the sym-
metry plane, we can integrate out the remaining coordinates thus reducing
to a d=1 problem. The functional obtained in this way (and after taking
the thermodynamic limit) is

Fb(r)=F
R
dx 1[Fb, lb (j f r)−Fb, lb (rb,+)]+

1
b
{S(j f r)−j f S(r)}2

(3.1)

where r ¥ L1loc(R, R+), j(x, y)=j(0, y−x) and

j(0, x)=F dx2 · · · dxd J(0, (x, x2,..., xd)) (3.2)

j(x, y) is a C1 probability kernel supported by |x−y| [ 1.
As we have subtracted the equilibrium value Fb, lb (rb,+), Fb(r) is the

excess free energy [rather than the free energy] of the profile r; as a func-
tional with values in [0,.] (the latter included), Fb(r) is well defined on
L1loc(R, R+), as j f r is well defined and both integrands in (3.1) are non
negative. Denoting by

Nb :={r ¥ L.(R, R+) : lim inf
xQ.

r(x) > rb, 0, lim sup
xQ −.

r(x) < rb, 0} (3.3)

the v.d.W. surface tension is

yb := inf
r ¥Nb

Fb(r) (3.4)

We call instanton any element in Nb which satisfies the space depen-
dent m.f.e.

r( · )=Fb(r; · ), Fb(r; · )=exp{−bj f E −b(j f r)} (3.5)
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The instantons are the critical points of (3.1). Our main result is:

Theorem 3.1. For any b ¥ (bc, b0) the inf in (3.4) is a minimum,
and any minimizer r̄b is an instanton. Moreover r̄b(x)Q rb, ± as xQ ±.
and the convergence is exponentially fast. For b ¥ (bc, bg) there is a unique
instanton [up to translations], hence a unique minimizer, and this is a
strictly increasing function. For b ¥ (bg, b0) and for any minimizer r̄b, the
set {x: r̄b(x) \ rb,+} is made of infinitely many disjoint intervals.

The theorem will be proved in the sequel. In Section 4 we will intro-
duce a dynamics under which the free energy functional decreases (more
precisely it does not increase). We will use extensively such dynamics to
modify density profiles into others with smaller free energy. In particular
we will prove, see Theorem 4.6, that we can restrict the analysis to the
space L.(R; [RŒ, Rœ]), with RŒ and Rœ suitable, positive constants. In
Section 5 we will prove extensive bounds on the free energy of profiles
which deviate from equilibrium, namely that the free energy of a profile r
is bounded from below by the volume of the region where it either differs
from rb, ± or ‘‘oscillates between the two.’’ Such Peierls-type estimates will
be used to prove in Section 6 the existence of instantons which minimize
the free energy inNb, while in Section 7 we will establish properties on the
asymptotic behavior of the instantons, as a simple consequence of the
analysis of the solutions of the mean field equation (3.5). In Section 8 we
will draw some concluding remarks.

4. NON-LOCAL DYNAMICS

Stochastic dynamics for the LMP model may be defined as a birth-
death process (a ‘‘contact process’’ in the continuum) whose generator is
self-adjoint in L2 of any Gibbs measure. Its scaling limit as cQ 0 should
give rise to a deterministic non-local dynamics described by an equation of
the form

“r

“t
=−r+Fb(r; · ) (4.1)

Notice that the stationary solutions of (4.1) are also solutions of the m.f.e.
(3.5). While interesting on its own right, (4.1) is for us here merely a tool
for investigating Fb, so our analysis of (4.1) will be very partial and only
aimed at establishing properties needed for the proof of Theorem 3.1.
We are going to regard (4.1) as evolution equation on the space

L.(R; [a, b]), with 0 < a < b <. to be suitably chosen. Namely, r(x, t),
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x ¥ R, t \ 0, is a solution of (4.1) if it is a measurable function with values
in [a, b], it is differentiable in t for any x and it satisfies (4.1). We will also
consider partial dynamics, where, given a measurable region L, rL(x, t) is
required to solve (4.1) only in L, while rL(x, t)=rL(x, 0) for all x ¥ Lc and
t \ 0. We will denote by Tt(r) and T

L
t (r) the corresponding solutions

starting at t=0 from r. If L=R, TLt — Tt.
Since Fb(r; · ) is Lipschitz if r ¥ L., existence and uniqueness, i.e., well-

posedness of Tt and T
L
t , are easily settled in the following proposition,

whose proof is omitted.

Proposition 4.1. Suppose there are 0 < a < b <. so that

a [ Fb(r; · ) [ b, for all r ¥ L.(R; [a, b]) (4.2)

then Tt(r) and T
L
t (r) are well defined.

In the next corollary we will define pairs which satisfy (4.2). Let

Rœ= sup
b ¥ (bc, b0)

jb(`2) (4.3)

Recall that jb(s) is defined in (2.5) and that its maximum is reached at
s=`2, independently of b. Moreover for b > bg, rb,+ ¥ (`2, Rœ).

Corollary 4.2. Let b \ Rœ and

a [ inf
b ¥ (bc, b0)

inf
0 [ s [ b

jb(s) (4.4)

Then the pair a, b satisfies (4.2) for any b ¥ (bc, b0) and consequently,
Tt(r) and T

L
t (r) are well defined on L

.(R, [a, b]).

Proof. Recalling (3.5) and (2.5), if r ¥ L.(R, [a, b])

Fb(r; · ) ¥ [ inf
s ¥ [a, b]

jb(s), sup
s ¥ [a, b]

jb(s)] (4.5)

hence (4.2) follows from (4.3)–(4.4). The corollary is proved. L

The essential property of the flows Tt and T
L
t is that they dissipate free

energy:

Theorem 4.3. Let a and b satisfy (4.2), r ¥ L.(R; [a, b]) and such
that Fb(r) <.. Then for any t \ 0 and any measurable region L (possibly
L=R, in which case TLt — Tt)
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Fb(T
L
t (r))−Fb(r) [ −F

t

0
ds Ib(T

L
s (r); L) (4.6)

Ib(r; L)=F
L

dx (−r+Fb(r; x))
1
b
(− log r+log Fb(r; x)) (4.7)

Ib(r; L) \ 0 with equality iff r solves (3.5) in L.

Proof. If L is bounded, (4.6) is simply derived as an equality by
differentiating Fb(T

L
t (r)) w.r.t. the time t. Otherwise we call Dn=

L 5 [−n, n] and use the previous result for L bounded, to write

Fb(T
Dn
t (r))−Fb(r)=−F

t

0
ds Ib(T

Dn
s (r); Dn) (4.8)

By the validity of a barrier lemma, see Proposition 4.4 below,
TDnt (r)Q T

L
t (r) uniformly on the compacts. By the lower semicontinuity

ofFb, see Proposition 4.5 below, we have

lim
nQ.

Fb(T
Dn
t (r)) \Fb(T

L
t (r))

while, by Fatou’s lemma,

lim
nQ.

F
t

0
ds Ib(T

Dn
s (r); Dn) \ F

t

0
ds Ib(T

L
s (r); L)

Then the limit of (4.8) yields (4.6). The Theorem is proved. L

Proposition 4.4 [Barrier Lemma]. Let a and b satisfy (4.2),
then there are constants B > 0 and C so that the following holds. Let
ri ¥ L.(R; [a, b]), i=1, 2, call ri( · , t)=Tt(ri), let V \ e2B and t > 0, then

|r1(0, t)−r2(0, t)|

[ e (B−1) t sup
|x| [ Vt

|r1(x)−r2(x)|+C exp 3 −tV log
V
eB
4 (4.9)

Moreover, for any measurable region L, let rL( · , t)=TLt (r), r( · , t)=
Tt(r), r ¥ L.(R; [a, b]), and dL(x)=dist(x, Lc),

|r(x, t)−rL(x, t)| [ C exp 3 −dL(x) log 1
dL(x)
eBt
24 (4.10)
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Proof. By writing (4.1) in integral form we get

Tt(r1)−Tt(r2)=e−t[r1−r2]+F
t

0
ds e−(t−s){Fb(Ts(r1); · )−Fb(Ts(r2); · )}

Let z ¥ [0, 1] be an interpolating parameter, and write

Ks(z, x) :=Fb(zTs(r1)+(1−z) Ts(r2); x)

Then

Tt(r1)−Tt(r2)=e−t[r1−r2]+F
t

0
ds e−(t−s) F

1

0
dz
d
dz
Ks(z, · )

Let

B := sup
r ¥ [a, b]

j −b(r) (4.11)

(jb is defined in (2.5)), then,

: d
dz
Ks(z, x) : [ B(j f j f |r1( · , s)−r2( · , s)|)(x)

hence

|r1(x, t)−r2(x, t)|

[ e−t |r1(x, 0)−r2(x, 0)|+B F
t

0
ds e−(t−s) sup

|x−y| [ 2
|r1(y, s)−r2(y, s)|

because j(x, y) is supported by |x−y| [ 1 (Rd=1 for d=1).
Iterating the inequality and calling N the smallest integer larger or

equal to Vt/2, we get:

|r1(0, t)−r2(0, t)| [ C
n < N
e−t
(Bt)n

n!
sup
|x| [ Vt

|r1(x, 0)−r2(x, 0)|+C
(Bt)N

N!

where C=jb(`2), as Fb( · ; · ) is bounded by the maximum of jb(s),

which is reached at s=`2. Use of the Stirling formula, then yields (4.9).
To prove (4.10), we proceed in the same way, iterating N times, with N

the smallest integer larger or equal to dL(x)/2. The proposition is proved. L
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Proposition 4.5 (Lower Semicontinuity). Let rn ¥ L.(R) be a
sequence converging to r uniformly on the compacts. Then

lim inf
nQ.

Fb(rn) \Fb(r) (4.12)

Proof. By (3.1), Fb is an integral of a positive function, then (4.12)
follows by using Fatou’s lemma. The proposition is proved. L

Theorem 4.6. Let Rœ as in (4.3) and

RŒ= inf
b ¥ (bc, b0)

inf
0 [ s [ Rœ

jb(s) (4.13)

Then Tt(r) and T
L
t (r) are well defined on L

.(R, [RŒ, Rœ]) and the inf
of Fb in Nb is the same as the inf in Nb 5 L.(R, [RŒ, Rœ]). Finally, any
instanton is in L.(R, [RŒ, Rœ]).

Proof. The statement about well-posedness for Tt(r) and T
L
t (r) is

already proved in Corollary 4.2, setting b=Rœ.
The statement in the theorem is a consequence of the following

inequality valid for any r such thatFb(r) <.

Fb(rgg) [Fb(r) where rgg :=max{RŒ, min{r, Rœ}} (4.14)

As the proofs are similar we will only prove ‘‘the upper half ’’ of the above
inequality, namely that

Fb(rg) [Fb(r) where rg :=min{r, Rœ} (4.15)

We will first show that for any A > Rœ there is dA > 0 so that the
following holds. LetFb(r) <., n > 0, call

XA, n(r) :={x ¥ [−n, n] : r(x) > A} (4.16)

If |XA, n(r)| > 0, there is r (1) such that Fb(r (1)) [Fb(r), r (1)=r outside
XA, n(r) and

Rœ [ r (1) [ r−dA on XA, n(r) (4.17)

To prove (4.17), we shorthand L=XA, n(r) and set r (1)=T
L
t (r) with

t=(A−Rœ)/(2A), then, by Theorem 4.3,Fb(r (1)) [Fb(r). Since Fb \ 0,

“r

“t
\ −r
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hence, on L=XA, n(r) and for s [ t

TLs (r) \ A−As \ A−
A−Rœ
2

(4.18)

which proves the first inequality in (4.17). On the other hand, since
Fb [ Rœ,

“TLs (r)
“s

[ −TLs (r)+Rœ

hence, by (4.18), on L=XA, n(r)

TLt (r) [ r−t 1A−
A−Rœ
2
−Rœ2=r−(A−Rœ)

2

4A
(4.19)

thus proving (4.17), with dA given by the last term in (4.19).
If |XA, n(r (1))| > 0, we apply the previous procedure starting from r (1)

(instead of r) and get a new function r (2); by induction we either obtain an
infinite sequence r (k), or a finite one, if, for some k, |XA, n(r (k))|=0. In the
former case, r (k)Q r (.) (by monotonicity), Fb(r (.)) [Fb(r) (by lower
semicontinuity, Proposition 4.5) and |XA, n(r (.))|=0 because

{x ¥XA, n(r (.)) : r (.) \ A} ı 3
k \ 1
{x ¥XA, n(r) : r \ A+kdA}

The Lebesgue measure of the set on the r.h.s. vanishes because, by
assumption (see below (3.1)) r is locally integrable, hence a.e. finite in
[−n, n].
We call rA, n the function r (.) if the sequence r (k) is infinite, otherwise

rA, n is the last term of the sequence. In any case we have Fb(rA, n) [Fb(r),
rA, n [ A a.e. in [−n, n] (because |XA, n(rA, n)|=0) and rA, n=r outside
XA, n(r).
By monotonicity we can set

rn := lim
AQ Rœ

rA, n

and again, by lower semicontinuity, Fb(rn) [Fb(r); by construction
rn [ Rœ a.e. on [−n, n], while rn=r whenever r [ Rœ, i.e., rn(x)=
min{r(x), Rœ} a.e. in [−n, n]. Finally, rn=r outside [−n, n]. Then again
by monotonicity

rg= lim
nQ.
rn

and by lower semicontinuity,Fb(rg) [Fb(r) thus proving (4.15).
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Finally if r solves (3.5), r ¥ [RŒ, Rœ] by (4.5). The theorem is
proved. L

Since

Tt(r)=e−tr+F
t

0
ds e−(t−s)Fb(Ts(r); · )

Tt(r)(x)−e−tr(x) is differentiable in x with derivative uniformly bounded
in L.(R, [RŒ, Rœ]). Analogous property holds for TLt (r), so that, by the
Ascoli–Arzelà theorem we have proved:

Proposition 4.7. Let r ¥ L.(R, [RŒ, Rœ]) and {tj} a divergent
sequence. Then there is a divergent subsequence {t −j} so that TtŒj (r) con-
verges uniformly on the compacts of R. Analogous property holds for TLt .

The last property of dynamics we need is:

Theorem 4.8. Let r ¥ L.(R, [RŒ, Rœ]) and F(r) <.. Then any
limit point u of Tt(r) [in the sense of uniform convergence on the com-
pacts] satisfies (3.5) and F(u) [F(r). Analogously, if L is a measurable
region, any limit point u of TLt (r) satisfies (3.5) in L andF(u) [F(r).

The proof of Theorem 4.8 is based on the fact that if u does not satisfy
(3.5), then Tt(u) (or T

L
t (u)) has positive free energy dissipation. By using

regularity of dynamics, we then find that the orbit Tt(r) (or T
L
t (r)) dissi-

pates an infinite amount of free energy, against the assumption that
Fb(r) <.. We omit the details.

5. CONTOURS, PEIERLS ESTIMATES

By Theorem 4.6, we will hereafter consider the functional F on the
space L.(R, [RŒ, Rœ]). In this section we will prove that the free energy
cost of a density profile which ‘‘deviates’’ from the equilibrium values rb, ±
is proportional to the volume of the region where this happens. We fix b
in (bc, b0) and often drop it from the notation. Contours are defined as
regions where a ‘‘significant deviation’’ from equilibrium occurs. Measur-
ing deviations by sup norm is too restrictive, an acceptable compromise is
to take sup norm but after coarse graining, a procedure already used in
LMP and quite common in statistical mechanics.

5.1. Block Spins

Let D (a), a=2n, n ¥ Z, be a decreasing sequence of partitions of R into
intervals of side a (i.e., D (a) is coarser than D (aŒ) if a \ aŒ). We also denote
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by C (a)x , x ¥ R, the interval in D (a) which contains the point x (we use the
symbol C, which stands for cube, by analogy with LMP). When writing a
in the sequel we tacitly suppose a ¥ {2n, n ¥ Z}. For any such a and any
r ¥ L.(R, [RŒ, Rœ]), we define the ‘‘coarse grained image’’ of r as

Av(a)(r; x)=
1
a
F
C(a)x
dxŒ r(xŒ) (5.1)

which is a bounded, D (a)-measurable function of x (i.e., constant on each
interval of D (a)). We then introduce for any given z > 0, the ‘‘block spin
configuration’’ associated to r as:

g (a, z)(r; x)=˛ ±1 if |Av (a)(r; x)−rb, ± | [ z
0 otherwise

(5.2)

Following Zahradnik, (11) we finally introduce the notion of ‘‘con-
tours.’’

5.2. Contours

Given the parameters aœ > aŒ > 0 and z > 0 we define for any
r ¥ L.(R; [RŒ, Rœ]) the sets of + and of − correct points as follows. x is
+correct (relative to r) if g (aŒ, z)(r; y)=1 in the interval C (aœ)x and also in the
two intervals of D (aœ) to the right and to the left of C (aœ)x . The − correct
points are defined analogously and the contours are the maximal connected
components of the complement of the set of all (both + and − ) correct
points.
To simplify notation we reduce the number of parameters by relating

aŒ and aœ as follows:

a > 2; a±=a ±1, aŒ=a− , aœ=a+ (5.3)

(recall that 2 is larger than the range of the interaction). We will often drop
the suffix a and z simply writing g(r; r), when needed we will resume the
old notation. The main result in this section is:

Theorem 5.1. For any z > 0 small enough there is a0(z) > 0 and
for any a \ a0(z)−1 there is c > 0 so that the following holds. Let
r ¥ L.(R; [RŒ, Rœ]) and C the union of all the (a, z)- contours of r, then

Fb(r) \ c |C| (5.4)

(|C| denoting the Lebesgue measure of C).
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Proof. Given r, a > 2 and z, we define three families of D (a− )-measur-
able regions, {Ai}, {Bi} and {Ii}, as follows.

0
i
Ai={x: g(r; x)=0}

0
i
bi={x: g(r; x)=1, and ,xŒ s.t. |xŒ−x|=1 and g(r; x)=−1}

Ai and Bi being intervals belonging to D (a− ). The family I{Ii} is made of
disjoint intervals of length (4+3a−) which are built as follows: starting
from the origin, find the first interval in the collection {Ai, Bi} which is
contained in R+ and let I0 be the interval of length (4+3a−) with the same
center. I1 (I−1) is then constructed with the same rule, with R+ replaced by
the half-line to the right (left) of I0, with the further request of not inter-
secting I0; same procedure defines Ik, |k| > 1.
We obviously have

Fb(r) \ C
I ¥I

Fb, I(r)

where, analogously to (2.3),

Fb, I(r)=F
I
dx 1[Fb, lb (j f r)−Fb, lb (rb,+)]+

1
b
{S(j f r)−j f S(r)}2

(5.5)

By translation invariance and symmetry under reflection, we have

Fb(r) \ Card(I) inf
rŒ ¥M

Fb, I(rŒ) (5.6)

where I is the interval of length 4+3a− centered at 0 and

M={r ¥ L.(R; [RŒ, Rœ]) : either g(r; 0)=0 or both g(r; 0)=1

and g(r; a−)=−1}

Observe that Fb, I(r) depends only on the restriction of r to Ig, where Ig is
the interval of length 8+3a− centered at 0. It is then convenient to regard
the functionalFb, I as defined in L.(Ig; [RŒ, Rœ]). Let {rn} be a minimizing
sequence for the inf in (5.6) which converges weakly in L2(Ig) to a function
rg ¥ L.(R; [RŒ, Rœ]) (having used weak compactness of the balls of
L2(Ig)). Thus

inf
rŒ ¥M

Fb, I(rŒ) \Fb, I(rg)
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by weak lower semicontinuity. Indeed by (5.5) the term

F
I
dx 1[Fb, lb (j f r)−Fb, lb (rb,+)]+

1
b
S(j f r)2

is continuous in the weak L2(Ig) topology, while the last term
− >I dx j f S(r) is lower semicontinuous in the same topology, by the con-
cavity of the entropy S( · ). Since rg is a weak limit of elements of M, rg

cannot be the function identically equal either to rb,+ or rb, − , hence
Fb, I(rg) > 0 and the theorem is proved because Card(I) \ c0 |C|.
A more detailed analysis of the lower bound and its dependence on the

parameters of the model can be found in an earlier version of this paper
at the web address: http://mat.uniroma2.it/ricerca/pre-print/aree/triolo/
GPTF.ps. L

6. EXISTENCE OF INSTANTONS

Existence of instantons (i.e., solutions of (3.5) in the spaceNb, defined
in (3.3)) is proved in Theorem 6.3 later, where we also show that the inf in
(3.4) can as well be taken on the set (subset of Nb) of all instantons. We
need two preliminary lemmas.

Lemma 6.1. For any z > 0 small enough there is a1(z) > 0 so that
for all a [ a1(z) and all pairs (r, N), r ¥ L.(R, [RŒ, Rœ]), N> 0, such that
g (a, z)(r; x)=1 for all x \N,

rb,+−z < Fb(r)(x) < rb,++z, for all x \N+2 (6.1)

Analogously, if g (a, z)(r; x)=−1 for all x [ −N, then

rb, − −z < Fb(r)(x) < rb, −+z, for all x [ −N−2 (6.2)

Finally, if g (a, z)(r; x)=±1 for all x \N, resp. for all x [ −N, and if r
satisfies (3.5) in x > N+2, resp. x < −N−2, then in such intervals
|r(x)−rb,+| < z and resp. |r(x)−rb, − | < z.

Proof. We will use here an improved version of (4.5): let −. [ x0
< x1 [+., a < b both in [RŒ, Rœ], then recalling (3.5) and (2.5), if
j f r ¥ L.([x0−1, x1+1], [a, b]),

Fb(r; x) ¥ [ inf
s ¥ [a, b]

jb(s), sup
s ¥ [a, b]

jb(s)], for all x ¥ [x0, x1] (6.3)
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We will also use that, given any z small enough, there is E > 0 so that

inf
s ¥ [rb,+−z− E, rb,++z+E]

jb(s) \ rb,+−z,

sup
s ¥ [rb,+−z− E, rb,++z+E]

jb(s) [ rb,++z
(6.4)

Suppose g (a, z)(r; x)=1 for all x \N, then for x \N+1,

F
.

N
dy j(x, y) r(y) [ F

.

N
dy j (a)(x, y) r(y)+4caRœ [ rb,++z+4caRœ

where

j (a)(x, y)=Av(a)(j(x, · ); y), | j (a)(x, y)−j(x, y)| [ c1|x−y| [ 2

with c a constant and having supposed a [ 1. Analogously, for x \N+1

F
.

N
dy j(x, y) r(y) \ rb,+−z−4caRœ

By choosing a small enough, j f r(x) ¥ [rb,+−z− E, rb,++z+E], for
all x \N+2, hence (6.1) follows from (6.3) and (6.4) (with x0=N+1 and
x1=.). (6.2) is proved analogously. The last statement of the lemma is
trivial because r=Fb(r; · ) for x > N+2 and x < −N−2. The lemma is
proved. L

Lemma 6.2. Let a and z > 0 be as in Lemma 6.1, N such that the
interval L :=[N+2,.) is D (a)-measurable and r ¥ L.(R, [RŒ, Rœ]) such
that g (a, z)(r; x)=1 for all x \N. Then

g (a, z)(TLt (r); x)=1, for all x \N+2 and all t \ 0 (6.5)

Analogously, if L :=(−., −N−2] is D (a)-measurable, g (a, z)(r; x)=−1 for
all x [ −N, then

g (a, z)(TLt (r); x)=−1, for all x [ −N−2 and all t \ 0 (6.6)

Proof. As the two are analogous, we only prove (6.5). Call r0 the
function r of the lemma. Given y > 0, denote by r(x, t) the elements of
C([0, y], L.(R, [RŒ, Rœ])) and

Xy, r0={r ¥ C([0, y], L
.(R, [RŒ, Rœ])) : r( · , 0) — r0( · ), r( · , t)=r0( · )

on Lc×[0, y]}
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Let S be the map from Xy, r0 into itself defined by setting for x ¥ L and
t [ y

Sr(x, t)=e−tr0(x)+F
t

0
ds e−(t−s)Fb(r( · , s); x)

If y > 0 is small enough, S is a contraction on Xy, r0 (equipped with sup
norm) and the only fixed point ofS is therefore the orbit TLt (r0). The set

Y={r ¥Xy, r0 : g
(a, z)(r( · , t)); x)=1 for all x ¥ L}

is closed and by Lemma 6.1 is invariant under S. Then it contains the
fixed point of S hence (TLt (r0))t ¥ [0, y] is in Y, thus proving (6.5) for t [ y.
By induction, the validity of (6.5) extends to all t and the lemma is
proved. L

Theorem 6.3. Let b ¥ (bc, b0) and z > 0, then for any r ¥Nb 5
L.(R, [RŒ, Rœ]) such that Fb(r) <. there is an instanton r̄b such that
Fb(r̄b) [Fb(r) and such that |r̄b(x)−rb, ± | [ z definitively as xQ ±..

Proof. Since Fb(r) <., by Theorem 4.3, for any t \ 0, Fb(Tt(r))
<.. Let z > 0 be as small as required by Lemma 6.1, let a <min(a0(z),
a1(z)), a0(z) as in Theorem 5.1 and a1(z) as in Lemma 6.1. Write g=g (a, z).
By Theorem 5.1, for any t \ 0 there is Nt such that

g(Tt(r); x)=a+ ] 0, for all x \Nt;

g(Tt(r); x)=a− ] 0, for all x [ −Nt
(6.7)

We want to show that a±=±1. Call L± the largest D (a)-measurable
intervals in [N0+2,.) and (−., −N0−2], N0 the value of Nt at t=0.
Since r ¥Nb, g(r; x)=±1 when x \N0 and, respectively, when x [ −N0,
then, by Lemma 6.2,

g(TL+t (r); x)=1, for all x ¥ L+;

g(TL−t (r); x)=−1, for all x ¥ L−
(6.8)

By the barrier lemma, Proposition 4.4,

lim
xQ ±.

|TL±t (r)(x)−Tt(r)(x)|=0 (6.9)

thus concluding the proof that a±=±1 in (6.7).
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Since a±=±1, Tt(r) has at least one contour. On the other hand,
since it has finite free energy, Tt(r) has finitely many contours. We call
[xi(t), yi(t)], i=1,..., kt, kt \ 1, the closure of the contours of Tt(r) and
notice that, by Theorem 5.1,

sup
t \ 0
sup
i=1, kt

|yi(t)−xi(t)| <., sup
t \ 0
kt=n<., (n \ 1) (6.10)

Then there is a sequence tj Q. with ktj=k ¥ [1, n] for all tj. By taking
subsequences we may also suppose, without loss of generality, that
g(Ttj (r); x) has a constant sign (for all tj) in each interval (yi(tj), xi+1(tj)),
1 [ i [ k. By possibly taking subsequences we may also suppose that

lim inf
tj Q.

|xi+1(tj)−yi(tj)|=lim sup
tj Q.

|xi+1(tj)−yi(tj)|, 1 [ i [ k−1

Finally, writing Dar(x)=r(x+a), by Theorem 4.8 there is a subsequence
t −j so that for any i=1,..., k, Dxi(tŒj)TtŒj (r), converges uniformly on the
compacts of R to a function ri. By Proposition 4.5, Fb(ri) <. and by
Theorem 4.8, ri solves (3.5). Call a±, i the quantities in (6.7) with ri replac-
ing Tt(r). Then a−, i=1 if, calling a the largest integer [ i such that
|xa(t

−

j)−ya−1(t
−

j)|Q., it happens that g(TtŒj (r; · )=1 on [ya−1(t
−

j), xa(t
−

j)];
otherwise a−, i=−1. We are using the convention that y0=−. and
xk+1=.. Analogously, a+, i=1 if, calling a the smallest integer > i
such that |xa(t

−

j)−ya−1(t
−

j)|Q., it happens that g(TtŒj (r; · )=1 on
[ya−1(t

−

j), xa(t
−

j)]; otherwise a+, i=−1. We want to prove that there is at
least an index i such that a±, i=±1. Let i be the smallest integer a such
that a+, a=1, i is well defined because a+, k=1. Then a−, i=−1, otherwise
a+, i−1=1 against the assumption of minimality of i.
We have proved so far that there is r, r=ri, which solves (3.5) and it

is such that for some N> 0, g(r; x)=±1 for all x \ ±N. By Lemma 6.1,
if z and a are small enough, for x > N+2

r(x)=Fb(r; x) ¥ [rb,+−z, rb,++z]

while for x < −N−2

r(x)=Fb(r; x) ¥ [rb, − −z, rb, −+z]

Thus r ¥Nb, hence it is an instanton. The theorem is proved. L

Theorem 6.4. For any b ¥ (bc, b0) there is an instanton r̄b, i.e.,
a solution of (3.5) which is inNb, such that

inf
r ¥Nb

Fb(r)=Fb(r̄b) (6.11)
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Proof. Let rn ¥ L.(R, [RŒ, Rœ]) be a minimizing sequence for (3.5).
By Theorem 6.3, there is a sequence r̄b, n of instantons which is a minimiz-
ing sequence as well. By construction, there is C so that Fb(r̄b, n) [ C for
all n, while a±, n=±1, where a±, n are defined by (6.7) with r̄b, n replacing
Tt(r). As r̄b, n solves (3.5) its derivative is bounded (for all x and all n), thus
by the Ascoli–Arzelà theorem, r̄b, n converges uniformly on the compacts
by subsequences and any limit point u satisfies (3.5) (by the continuity of
Fb(r; · ) for the uniform convergence on the compacts). We can then
proceed as in the proof of Theorem 6.3, thus finding a sequence nj and
reals xnj such that Dxnj r̄b, nj Q u and u is an instanton. The theorem is
proved. L

7. ASYMPTOTIC BEHAVIOR OF INSTANTONS

We will first prove the statement in Theorem 3.1 about exponential
convergence of the instantons:

Theorem 7.1. Let b ¥ (bc, b0) and r̄b an instanton such that
Fb(r̄b) <.. Then there are c and w > 0 so that

|r̄(x)−rb,+| [ ce−wx, for all x \ 0;

|r̄(x)−rb, − | [ ce−w |x|, for all x [ 0
(7.1)

Proof. Since r̄b has finite free energy, it has finitely many contours
(defined with z > 0 so small to satisfy the requests below) and a so large
that z and a−1 satisfy the assumptions of Lemma 6.1. Then by Lemma 6.1,
there is N so that

|r(x)−rb,+| [ z, for all x \N−2;

|r(x)−rb, − | [ z, for all x [ −N+2
(7.2)

Let us prove the statement in (7.1) relative to rb,+, the proof of the
other one is analogous and omitted. We write for x > N,

r(x)−rb,+=Fb(r; x)−Fb(rb,+; x) (7.3)

where rb,+ in the argument of the last term, denotes the function con-
stantly equal to rb,+. Calling v(x) :=|r(x)−rb,+|,

v(x) [ F
1

0
dz : d
dz
Fb(z[r−rb,+]+rb,+; x) : (7.4)
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By (7.2), the values of the function z[r−rb,+] involved in the computation
of the last term are not larger than z, then, by (6.3),

Fb(z[r−rb,+]+rb,+; x) [ rb,++z

and

: d
dz
Fb(z[r−rb,+]+rb,+; x) :

[ (rb,++z) b max
s=±1

|1−(rb,++sz)2/2| (j f j f v)(x)

By (2.6) and (2.7), if z > 0 is small enough, there is p < 1 so that, for x ¥ L,

v(x) [ p(j f j f v)(x) (7.5)

Then if x−N \ 2n,

v(x) [ pn ||v||. [ pnRœ (7.6)

An analogous argument is used for x [ 0, the theorem is proved. L

Theorem 7.2. Let b ¥ (bg, b0) and r̄b an instanton such that
Fb(r̄b) <., then the set {x: r̄b(x) \ rb,+} is made of infinitely many
disjoint intervals.

Proof. Writing r(x) for r̄b(x), since f
−

b(rb,+) < 0, r(x) cannot con-
verge to rb,+ as xQ. strictly from above, or strictly from below; we
cannot exclude however that there is x̄ so that r(x)=rb,+ for all x \ x̄.
Supposing x̄ the smallest number with such a property, we want to prove
that again r(x) cannot converge to rb,+ as x q x̄, strictly from above, or
strictly from below. Arguing by contradiction suppose for instance
r(x) < rb,+ for x ¥ (x̄−d, x̄), d > 0. Since r(x)Q rb,+, there is dŒ small and
positive, so that r(x) > rb,+ for x ¥ (x̄−dŒ+2, x̄+2), against the definition
of x̄. The theorem is proved. L

Theorem 7.3. Let b ¥ (bc, bg), then there is a unique instanton r̄b
(up to translations) and r̄ −b > 0.

Proof. We first observe that for any b ¥ [rb,+,`2)

sup
s [ b
jb(s) [ b (7.7)
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so that, letting a as in (4.4), by (4.5) the pair (a, b) satisfies (4.2). On the
other hand, restricted to [a, b], the function jb(s) is strictly increasing. For
this reason, a comparison theorem is valid for (4.1) in L.(R, [a, b]), with
the above values of a and b: namely if u and r are in L.(R, [a, b]) and
u \ r, then for all t > 0, Tt(u) \ Tt(r) and, for any measurable region L,
TLt (u) \ T

L
t (r) as well. The proof is elementary and omitted.

Notice that rb, ± ¥ [a, b], hence the restriction to L.(R, [a, b]) is
inconsequential when studying instantons. Uniqueness and monotonicity of
the instanton are proved as for the non-local functional arising from the
ferromagnetic Ising model, as we have seen that comparison inequalities
are valid for the dynamics (7.2). We just outline the argument which
follows very closely that in ref. 12, to which we refer for details. The
monotonicity of the instanton is proved by taking for r in the beginning of
the proof of Theorem 6.3, an increasing function. Then Tt(r) is still
increasing, by the comparison theorem, and monotonicity is preserved in
the limit. Thus the instanton r̄b constructed from such r is non decreasing.
By differentiating (3.5) we have

rŒ=brj f ([1−(j f r)2/2] j f rŒ) (7.8)

By (7.8) and observing that the square bracket is now positive, it follows
that if r̄ −b(x)=0, then j f j f rŒ(x)=0. By iterating the argument, we
would find r̄ −b — 0, which contradicts the fact that r̄b(x)Q rb, ± as
xQ ±..
The proof of the uniqueness of the instanton is less elementary. It follows

by proving that any orbit Tt(r) starting from r ¥Nb 5 L.(R, [a, b]) is
attracted by a translate of the instanton. This is done in various steps. First we
study the linearization of (4.1) around the instanton r̄b:

“u
“t
=Lu :=−u+r̄bbj f {[1−(j f r̄b)2/2] j f u} (7.9)

It is convenient to regard L as an operator on L.(R). Exploiting the non
negativity of the kernel of the operator r̄bbj f {[1−(j f r̄b)2/2] j f u}
which makes L a Perron–Frobenius operator, it can be proved (following
ref. 12, 13, and 14) that 0 is a simple eigenvalue with eigenvector r̄ −b and
that there is w > 0 so that the rest of the spectrum of L is in Re(z) < −w.
It is then not too hard to prove a local stability result, namely there is

E > 0 so that if, for some t, ||r−Dtr̄b ||. [ E, then there is x0 ¥ R so that

lim
tQ.
Tt(r)=Dx0 r̄b (7.10)
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We then need a Fife–McLeod bound, (12) on trapping an orbit between
instantons: namely, if r ¥Nb (and with values in [a, b]) there are t± (t) and
d(t) so that

Dt− (t)r̄b−d(t) [ Tt(r) [ Dt+(t)r̄b+d(t) (7.11)

with d(t)Q 0 and t± (t)Q t± , exponentially fast as tQ.. The proof uses
extensively the comparison inequality stated above and, being similar to
that in ref. 12, is omitted. Thus for any instanton r, there are t± so that

Dt− r̄b [ r [ Dt+ r̄b (7.12)

Using the local stability (proved earlier), it is shown in ref. 12 that if (7.12)
holds for some t− > t+ it holds as well for t

−

± and t
−

− < t− , t
−

+ > t+. By
iterations this proves that t−=t+, hence the uniqueness of the instanton.
The above is just a sketch of the proof, which is however too long and
similar to that in ref. 12 for being reported here. The theorem is proved. L

8. CONCLUDING REMARKS

In a paper still in preparation, Bodineau, Ioffe, and Presutti study the
large deviations for the original LMP model characterizing the surface
tension yb, c of the system, when the scaling parameter c is positive (and
small). Relying on similar results for Ising systems with Kac potentials, the
surface tension yb, c should converge as cQ 0 to the surface tension yb of
(3.4), when b ¥ (bc, bg). The same argument for b > bg, would only indi-
cate that the limit of yb, c is [ yb.
Equality would require an extension of our analysis to cylindrical

domains in Rd, d > 1, of the formTL×R, whereTL denotes a torus in Rd−1

of side L. One then needs to prove that there is no breaking of the planar
symmetry in the variational problem (3.4) extended to these cylindrical
domains, namely that the minimizers depend only on the coordinate along
the axis of the cylinder and hence they are d=1 instantons. There are
indications, De Masi, Gobron, in preparation, that our results extend to
cylindrical domains showing that the minimizers of the variational problem
are d-dimensional instantons and there is numerical evidence that the
minimizer is unique (up to translations) and given by the d=1 instanton.
We have further results indicating that there is bŒ ¥ (bg, b0) so that in

the whole (bc, bŒ) the minimizer is unique, up to translations; on the other
hand, however, we do not have examples of cases where uniqueness fails.
We also have preliminary results which show that at bg the instanton is
unique and also monotone.
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